Some Lp Inequalities for Polynomials Not Vanishing inside a Circle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rate of Growth of Polynomials Not Vanishing inside a Circle

A well known result due to Ankeny and Rivlin [1] states that if p(z) = ∑n v=0 avz v is a polynomial of degree n satisfying p(z) 6= 0 for |z| < 1 then for R ≥ 1 max |z|=R |p(z)| ≤ R n + 1 2 max |z|=1 |p(z)|. It was proposed by late Professor R.P. Boas, Jr. to obtain an inequality analogous to this inequality for polynomials having no zeros in |z| < K, K > 0. In this paper, we obtain some results...

متن کامل

Newman Polynomials Not Vanishing on the Unit Circle

A Newman polynomial is a polynomial in one variable whose coefficients are 0 or 1, and the length of a Newman polynomial is the number of coefficients that are 1. Several authors have asked about the highest minimum modulus of a length n Newman polynomial on the unit circle, but there remains a large gap between what has been conjectured and what has been proved. In this paper, we prove that fo...

متن کامل

Vanishing viscosity limit for incompressible flow inside a rotating circle

In this article we consider circularly symmetric incompressible viscous flow in a disk. The boundary condition is no-slip with respect to a 4 prescribed time-dependent rotation of the boundary about the center of the disk. We prove that, if the prescribed angular velocity of the boundary 5 has finite total variation, then the Navier–Stokes solutions converge strongly in L2 to the corresponding ...

متن کامل

Some Inequalities for Polynomials

Let pn(z) be a polynomial of degree n. Given that pn(z) has a zero on the circle \z\ = p(0 < p < oo) we estimate maxi , Ä>1 |/>„(z)| in terms of maxi:i , |/>„(z)|. We also consider some other related problems. It is well known (see [8, p. 346], or [6, vol. 1, p. 137, Problem III 269]) that if pn(z) = 2yt=oaAz/c 's a polynomial of degree « such that |p„(z)| â M for |z| Si 1, then at a point z ou...

متن کامل

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISRN Mathematical Analysis

سال: 2014

ISSN: 2090-4665

DOI: 10.1155/2014/272405